Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(14): 13319-13332, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37311219

RESUMO

Inorganic colloidal nanoparticle (NP) properties can be tuned by stripping stabilizing ligands using a poor solvent. However, the mechanism behind ligand stripping is poorly understood, in part because in situ measurements of ligand stripping are challenging at the nanoscale. Here, we investigate ethanol solvent-mediated oleylamine ligand stripping from magnetite (Fe3O4) NPs in different compositions of ethanol/hexane mixtures using atomistic molecular dynamics (MD) simulations and thermogravimetric analysis (TGA). Our study elucidates a complex interplay of ethanol interactions with system components and indicates the existence of a threshold concentration of ∼34 vol % ethanol, above which ligand stripping saturates. Moreover, hydrogen bonding between ethanol and stripped ligands inhibits subsequent readsorption of the ligands on the NP surface. A proposed modification of the Langmuir isotherm explains the role of the enthalpy of mixing of the ligands and solvents on the ligand stripping mechanism. A good agreement between the MD predictions and TGA measurements of ligand stripping from Fe3O4 NPs validates the simulation observations. Our findings demonstrate that the ligand coverage of NPs can be controlled by using a poor solvent below the threshold concentration and highlight the importance of ligand-solvent interactions that modulate the properties of colloidal NPs. The study also provides an approach for a detailed in silico study of ligand stripping and exchange from colloidal NPs that are crucial for applications of NPs spanning self-assembly, optoelectronics, nanomedicine, and catalysis.

2.
Proc Natl Acad Sci U S A ; 119(30): e2201566119, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858447

RESUMO

Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy. By studying the dynamics of a model associative gel system that undergoes dynamical arrest in the absence of aging effects, we show that the mean stress relaxation time measured from linear rheometry is directly correlated to the quiescent superdiffusive dynamics of the microscopic clusters, which are governed by a buildup of internal stresses during arrest. We also show that perturbing the system via small mechanical deformations can result in large intermittent fluctuations in the form of avalanches, which give rise to a broad non-Gaussian spectrum of relaxation modes at short times that is observed in stress relaxation measurements. These findings suggest that the linear viscoelastic stress relaxation in arrested soft materials may be governed by nonlinear phenomena involving an interplay of internal stress relaxations and perturbation-induced intermittent avalanches.

3.
Adv Mater ; 34(40): e2203366, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35679599

RESUMO

Plasmonic nanoparticles that can be manipulated with magnetic fields are of interest for advanced optical applications, diagnostics, imaging, and therapy. Alignment of gold nanorods yields strong polarization-dependent extinction, and use of magnetic fields is appealing because they act through space and can be quickly switched. In this work, cationic polyethyleneimine-functionalized superparamagnetic Fe3 O4 nanoparticles (NPs) are deposited on the surface of anionic gold nanorods coated with bovine serum albumin. The magnetic gold nanorods (MagGNRs) obtained through mixing maintain the distinct optical properties of plasmonic gold nanorods that are minimally perturbed by the magnetic overcoating. Magnetic alignment of the MagGNRs arising from magnetic dipolar interactions on the anisotropic gold nanorod core is comprehensively characterized, including structural characterization and enhancement (suppression) of the longitudinal surface plasmon resonance and suppression (enhancement) of the transverse surface plasmon resonance for light polarized parallel (orthogonal) to the magnetic field. The MagGNRs can also be driven in rotating magnetic fields to rotate at frequencies of at least 17 Hz. For suitably large gold nanorods (148 nm long) and Fe3 O4 NPs (13.4 nm diameter), significant alignment is possible even in modest (<500 Oe) magnetic fields. An analytical model provides a unified understanding of the magnetic alignment of MagGNRs.


Assuntos
Ouro , Nanotubos , Ouro/química , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Nanotubos/química , Polietilenoimina , Soroalbumina Bovina
4.
ACS Appl Mater Interfaces ; 13(33): 39030-39041, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34402305

RESUMO

Precise control over the assembly of biocompatible three-dimensional (3D) nanostructures would allow for programmed interactions within the cellular environment. Nucleic acids can be used as programmable crosslinkers to direct the assembly of quantum dots (QDs) and tuned to demonstrate different interparticle binding strategies. Morphologies of self-assembled QDs are evaluated via gel electrophoresis, transmission electron microscopy, small-angle X-ray scattering, and dissipative particle dynamics simulations, with all results being in good agreement. The controlled assembly of 3D QD organizations is demonstrated in cells via the colocalized emission of multiple assembled QDs, and their immunorecognition is assessed via enzyme-linked immunosorbent assays. RNA interference inducers are also embedded into the interparticle binding strategy to be released in human cells only upon QD assembly, which is demonstrated by specific gene silencing. The programmability and intracellular activity of QD assemblies offer a strategy for nucleic acids to imbue the structure and therapeutic function into the formation of complex networks of nanostructures, while the photoluminescent properties of the material allow for optical tracking in cells in vitro.


Assuntos
Reagentes de Ligações Cruzadas/química , Substâncias Luminescentes/química , Ácidos Nucleicos/química , Pontos Quânticos/química , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Rastreamento de Células , Portadores de Fármacos/química , Inativação Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Imagem Óptica , Relação Estrutura-Atividade , Propriedades de Superfície
5.
Adv Mater ; 33(25): e2008751, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33969551

RESUMO

Origami utilizes orchestrated transformation of soft 2D structures into complex 3D architectures, mimicking shapes and functions found in nature. In contrast to origami in nature, synthetic origami lacks the ability to monitor the environment and correspondingly adjust its behavior. Here, magnetic origami actuators with capabilities to sense their orientation and displacement as well as detect their own magnetization state and readiness for supervised folding are designed, fabricated, and demonstrated. These origami actuators integrate photothermal heating and magnetic actuation by using composite thin films (≈60 µm thick) of shape-memory polymers with embedded magnetic NdFeB microparticles. Mechanically compliant magnetic field sensors, known as magnetosensitive electronic skins, are laminated on the surface of the soft actuators. These ultrathin actuators accomplish sequential folding and recovery, with hinge locations programmed on the fly. Endowing mechanically active smart materials with cognition is an important step toward realizing intelligent, stimuli-responsive structures.

6.
Macromol Rapid Commun ; 42(7): e2000657, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33368746

RESUMO

Cyclic-poly(phthalaldehyde) (cPPHA) exhibits photo-triggerable depolymerization on-demand for applications like the photolithography of microfabricated electronics. However, cPPHA is inherently brittle and thermally sensitive; both of these properties limit its usefulness as an engineering plastic. Prior to this report, small molecule plasticizers are added to cPPHA-based films to make the polymer more flexible. But plasticizers can eventually leach out of cPPHA, then leaving it increasingly more brittle throughout product lifetime. In this research, a new approach to fabricating flexible cPPHA blends for use as spun fibers is achieved through the incorporation of poly (ε-caprolactone) (PCL) by a modified wet spinning method. Among blend compositions, the 50/50 cPPHA/PCL fiber shows fast transience (<50 s) in response to daylight while retaining the flexibility of PCL and mechanical properties of an elastomer (i.e., tensile strength of ≈8 MPa, Young's modulus of ≈118 MPa, and elongation at break of ≈190%). Embedding 2 wt% gold nanoparticles to cPPHA can further improve the transience rate of fibers comprising less than 50% cPPHA. These flexible, daylight-triggerable cPPHA/PCL fibers can be applied to an extensive range of applications, such as wearable electronics, intelligent textiles, and zero waste packaging for which modest mechanical performance and fast transience are desired.


Assuntos
Materiais Biocompatíveis , Nanopartículas Metálicas , Ouro , Poliésteres
7.
ACS Nano ; 14(12): 17018-17027, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33289544

RESUMO

Patchy particle interactions are predicted to facilitate the controlled self-assembly and arrest of particles into phase-stable and morphologically tunable "equilibrium" gels, which avoids the arrested phase separation and subsequent aging that is typically observed in traditional particle gels with isotropic interactions. Despite these promising traits of patchy particle interactions, such tunable equilibrium gels have yet to be realized in the laboratory due to experimental limitations associated with synthesizing patchy particles in high yield. Here, we introduce a supramolecular metal-coordination platform consisting of metallic nanoparticles linked by telechelic polymer chains, which validates the predictions associated with patchy particle interactions and facilitates the design of equilibrium particle hydrogels through limited valency interactions. We demonstrate that the interaction valency and self-assembly of the particles can be effectively controlled by adjusting the relative concentration of polymeric linkers to nanoparticles, which enables the gelation of patchy particle hydrogels with programmable local anisotropy, morphology, and low mechanical percolation thresholds. Moreover, by crowding the local environment around the patchy particles with competing interactions, we introduce an independent method to control the self-assembly of the nanoparticles, thereby enabling the design of highly anisotropic particle hydrogels with substantially reduced percolation thresholds. We thus establish a canonical platform that facilitates multifaceted control of the self-assembly of the patchy nanoparticles en route to the design of patchy particle gels with tunable valencies, morphologies, and percolation thresholds. These advances lay important foundations for further fundamental studies of patchy particle systems and for designing tunable gel materials that address a wide range of engineering applications.

8.
Sci Adv ; 5(8): eaaw2897, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31414046

RESUMO

New materials are advancing the field of soft robotics. Composite films of magnetic iron microparticles dispersed in a shape memory polymer matrix are demonstrated for reconfigurable, remotely actuated soft robots. The composite films simultaneously respond to magnetic fields and light. Temporary shapes obtained through combined magnetic actuation and photothermal heating can be locked by switching off the light and magnetic field. Subsequent illumination in the absence of the magnetic field drives recovery of the permanent shape. In cantilevers and flowers, multiple cycles of locking and unlocking are demonstrated. Scrolls show that the permanent shape of the film can be programmed, and they can be frozen in intermediate configurations. Bistable snappers can be magnetically and optically actuated, as well as biased, by controlling the permanent shape. Grabbers can pick up and release objects repeatedly. Simulations of combined photothermal heating and magnetic actuation are useful for guiding the design of new devices.

9.
Dalton Trans ; 48(34): 12822-12827, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31410421

RESUMO

Titanium(iv) isopropoxide in ethanol is aged under acidic conditions with a small amount of water. After adding a small amount of N,N-dimethylformamide, TiO2 nanofibers with average diameters of ∼70 nm are prepared by direct electrospinning. During in situ heating of the nanofibers, crystallization into anatase and rutile phases is observed.

10.
Anal Chem ; 90(22): 13702-13707, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30339019

RESUMO

A method for quantification of plasmon mode quality factors using a novel collinear single-beam interferometric nonlinear optical (INLO) microscope is described. A collinear sequence of phase-stabilized femtosecond laser pulses generated by a series of birefringent optics is used for the INLO experiments. Our experimental designs allow for the creation of pulse replicas (800 nm carrier wave) that exhibit interpulse phase stability of 33 mrad (approximately 14 attoseonds), which can be incrementally temporally delayed from attosecond to picosecond time scales. This temporal tuning range allows for resonant electronic Fourier spectroscopy of plasmonic gold nanoparticles. The collinear geometry of the pulse pair facilitates integration into an optical microscopy platform capable of single-nanoparticle sensitivity. Analysis of the Fourier spectra in the frequency domain yields the sample plasmon resonant response and homogeneous line width; the latter provided quantification of the plasmon mode quality factor. We have applied this INLO approach to quantitatively determine the influence of encapsulation of gold nanorods with silica shells on plasmon quality factors. We have studied a series of three gold nanorod samples, distinguished by surface passivation. These include cetyltrimethylammonium bromide (CTAB)-passivated nanorods, as well as ones encapsulated by 5 and 20 nanometer-thick silica shells. The Q-factor results show a trend of increasing quality factor, increasing by 46% from 54 ± 8 to 79 ± 9, in going from CTAB- to 20 nm silica-coated AuNRs. The straightforward method of INLO enables analysis of plasmon responses to environmental influences, such as analyte binding and solvent effects, as well as quantification of structure-specific plasmon coherence dynamics.

11.
Nanoscale ; 9(47): 18959-18965, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29181475

RESUMO

Ni nanoparticles (NPs) catalyze many chemical reactions, in which they can become contaminated or agglomerate, resulting in poorer performance. We report deposition of silica (SiO2) onto Ni NPs from tetraethyl orthysilicate (TEOS) through a reverse microemulsion approach, which is accompanied by an unexpected etching process. Ni NPs with an average initial diameter of 27 nm were embedded in composite SiO2-overcoated Ni NPs (SiO2-Ni NPs) with an average diameter of 30 nm. Each SiO2-Ni NP contained a ∼7 nm oxidized Ni core and numerous smaller oxidized Ni NPs with diameters of ∼2 nm distributed throughout the SiO2 shell. Etching of the Ni NPs is attributed to use of ammonium hydroxide as a catalyst for deposition of SiO2. Aliquots acquired during the deposition and etching process reveal agglomeration of SiO2 and Ni NPs, followed by dissociation into highly uniform SiO2-Ni NPs. This etching and embedding process may also be extended to other core materials. The stability of SiO2-Ni NPs was also investigated under high-temperature oxidizing and reducing environments. The structure of the SiO2-Ni NPs remained significantly unchanged after both oxidation and reduction, which suggests structural durability when used for catalysis.

12.
ACS Nano ; 11(10): 9957-9967, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28968093

RESUMO

The desire for designing efficient synthetic methods that lead to industrially important nanomaterials has led a desire to more fully understand the mechanism of growth and how modern synthetic techniques can be employed. Microwave (MW) synthesis is one such technique that has attracted attention as a green, sustainable method. The reports of enhancement of formation rates and improved quality for MW driven reactions are intriguing, but the lack of understanding of the reaction mechanism and how coupling to the MW field leads to these observations is concerning. In this manuscript, the growth of a metal nanoparticles (NPs) in a microwave cavity is spectroscopically analyzed and compared with the classical autocatalytic method of NP growth to elucidate the underpinnings for the observed enhanced growth behavior for metal NPs prepared in a MW field. The study illustrates that microwave synthesis of nickel and gold NPs below saturation conditions follows the Finke-Watzky mechanism of nucleation and growth. The enhancement of the reaction arises from the size-dependent increase in MW absorption cross section for the metal NPs. For Ni, the presence of oxides is considered via theoretical computations and compared to dielectric measurements of isolated nickel NPs. The study definitively shows that MW growth can be modeled by an autocatalytic mechanism that directly leads to the observed enhanced rates and improved quality widely reported in the nanomaterial community when MW irradiation is employed.

13.
Nanoscale ; 9(32): 11605-11618, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28770914

RESUMO

Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

14.
ACS Appl Mater Interfaces ; 9(13): 11895-11901, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28349697

RESUMO

Magnetic field-directed self-assembly of magnetic particles in chains is useful for developing directionally responsive materials for applications in soft robotics. Using materials with greater complexity allows advanced functions, while still using simple device architectures. Elastomer films containing chained magnetic microparticles were prepared through solvent casting and formed into magnetically actuated lifters, accordions, valves, and pumps. Chaining both enhances actuation and imparts a directional response. Cantilevers used as lifters were able to lift up to 50 times the mass of the polymer film. We introduce the "specific torque", the torque per field per mass of magnetic particles, as a figure of merit for assessing and comparing the performance of lifters and related devices. Devices in this work generated specific torques of 68 Nm/kgT, which is significantly higher than in previously reported actuators. Applying magnetic fields to folded accordion structures caused extension and compression, depending on the accordion's orientation. In peristaltic pumps comprised of composite tubes containing embedded chains, magnetic fields caused a section of the tube to pinch closed where the field was applied. These results will facilitate both the further development of soft robots based on chained magnetic particles and efforts to engineer materials with higher specific torque.

15.
Artigo em Inglês | MEDLINE | ID: mdl-27746581

RESUMO

Mucus hydration (wt%) has become an increasingly useful metric in real-time assessment of respiratory health in diseases like cystic fibrosis and COPD, with higher wt% indicative of diseased states. However, available in vivo rheological techniques are lacking. Gold nanorods (GNRs) are attractive biological probes whose diffusion through tissue is sensitive to the correlation length of comprising biopolymers. Through employment of dynamic light scattering theory on OCT signals from GNRs, we find that weakly-constrained GNR diffusion predictably decreases with increasing wt% (more disease-like) mucus. Previously, we determined this method is robust against mucus transport on human bronchial epithelial (hBE) air-liquid interface cultures (R2=0.976). Here we introduce diffusion-sensitive OCT (DS-OCT), where we collect M-mode image ensembles, from which we derive depth- and temporally-resolved GNR diffusion rates. DS-OCT allows for real-time monitoring of changing GNR diffusion as a result of topically applied mucus-thinning agents, enabling monitoring of the dynamics of mucus hydration never before seen. Cultured human airway epithelial cells (Calu-3) with a layer of endogenous mucus were doped with topically deposited GNRs (80×22nm), and subsequently treated with hypertonic saline (HS) or isotonic saline (IS). DS-OCT provided imaging of the mucus thinning response up to a depth of 600µm with 4.65µm resolution, over a total of 8 minutes in increments of ≥3 seconds. For both IS and HS conditions, DS-OCT captured changes in the pattern of mucus hydration over time. DS-OCT opens a new window into understanding mechanisms of mucus thinning during treatment, enabling real-time efficacy feedback needed to optimize and tailor treatments for individual patients.

16.
Biophys J ; 110(8): 1858-1868, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27119645

RESUMO

The mammary gland extracellular matrix (ECM) is comprised of biopolymers, primarily collagen I, that are created and maintained by stromal fibroblasts. ECM remodeling by fibroblasts results in changes in ECM fiber spacing (pores) that have been shown to play a critical role in the aggressiveness of breast cancer. However, minimally invasive methods to measure the spatial distribution of ECM pore areas within tissues and in vitro 3D culture models are currently lacking. We introduce diffusion-sensitive optical coherence tomography (DS-OCT) to image the nanoscale porosity of ECM by sensing weakly constrained diffusion of gold nanorods (GNRs). DS-OCT combines the principles of low-coherence interferometry and heterodyne dynamic light scattering. By collecting co- and cross-polarized light backscattered from GNRs within tissue culture, the ensemble-averaged translational self-diffusion rate, DT, of GNRs is resolved within ∼3 coherence volumes (10 × 5 µm, x × z). As GNRs are slowed by intermittent collisions with ECM fibers, DT is sensitive to ECM porosity on the size scale of their hydrodynamic diameter (∼46 nm). Here, we validate the utility of DS-OCT using pure collagen I gels and 3D mammary fibroblast cultures seeded in collagen/Matrigel, and associate differences in artificial ECM pore areas with gel concentration and cell seed density. Across all samples, DT was highly correlated with pore area obtained by scanning electron microscopy (R(2) = 0.968). We also demonstrate that DS-OCT can accurately map the spatial heterogeneity of layered samples. Importantly, DS-OCT of 3D mammary fibroblast cultures revealed the impact of fibroblast remodeling, where the spatial heterogeneity of matrix porosity was found to increase with cell density. This provides an unprecedented view into nanoscale changes in artificial ECM porosity over effective pore diameters ranging from ∼43 to 360 nm using a micron-scale optical imaging technique. In combination with the topical deposition of GNRs, the minimally invasive nature of DS-OCT makes this a promising technology for studying tissue remodeling processes.


Assuntos
Matriz Extracelular/metabolismo , Tomografia de Coerência Óptica/métodos , Animais , Colágeno Tipo I/metabolismo , Difusão , Fibroblastos/citologia , Ouro/química , Humanos , Imageamento Tridimensional , Nanotubos/química , Porosidade , Ratos
17.
Nanoscale ; 8(3): 1309-13, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26677134

RESUMO

We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model.

18.
Nanoscale ; 7(28): 12096-103, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26122945

RESUMO

A multifunctional gold nanorod (AuNR) complex is described with potential utility for theranostic anticancer treatment. The AuNR was functionalized with cyclodextrin for encapsulation of doxorubicin, with folic acid for targeting, and with a photo-responsive dextran-azo compound for intracellular controlled drug release. The interaction of a AuNR complex with HeLa cells was facilitated via a folic acid targeting ligand as displayed in the dark-field images of cells. Enhanced anticancer efficacy was demonstrated through the synergistic combination of promoted drug release upon ultraviolet (UV) light irradiation and photothermal therapy upon infrared (IR) irradiation. This multifunctional AuNR-based system represents a novel theranostic strategy for spatiotemporal delivery of anticancer therapeutics.


Assuntos
Antineoplásicos , Ouro , Raios Infravermelhos , Nanotubos/química , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Ouro/química , Ouro/farmacologia , Células HeLa , Humanos
19.
Chem Mater ; 27(8): 2888-2894, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26146454

RESUMO

Gold nanorods (GNRs) overcoated with SiO2 are of interest for enhancing the shape stability of GNRs during photo-thermal heating, for further functionalization with silanes, and for biomedical applications. While methods have recently been developed for synthesizing GNRs on a large scale, SiO2 overcoating of GNRs is still conducted on a small reaction scale. Here, we report a method for large-scale synthesis of SiO2-overcoated GNRs (SiO2-GNRs), which gives ~190 mg of SiO2-GNRs. SiO2 is deposited onto and encapsulates the cetyltrimethylammonium bromide (CTAB) coatings that stabilize GNRs by adding tetraethoxysilane (TEOS) via syringe pump. Control over the CTAB concentration is critically important for obtaining uniform overcoatings. Optical absorbance spectra of SiO2-GNRs closely resemble uncoated GNRs, which indicates overcoating of single rather than multiple GNRs and confirms that they remain well dispersed. By adjusting the reaction conditions, shells as thick as ~20 nm can be obtained. For thin shells (< 10 nm), addition of poly(ethylene glycol) silane (PEG-silane) at different times during the overcoating reaction allows facile control over the shell thickness, giving shells as thin as ~2 nm. The bulky PEG chain terminates further crosslinking and deposition of SiO2.

20.
Chem Commun (Camb) ; 51(15): 3087-90, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25594079

RESUMO

ZnS quantum dots were synthetized at room temperature using a simple photochemical process involving ketyl radicals. Through the simple adjustment of reagent concentration, the method allows the control of nanoparticle size. Transmission electron microscopy confirmed that the nanomaterial adopts the hexagonal structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...